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ABSTRACT 

The shipping industry operates on a global scale, characterized by significant volatility and 

cyclicality. It facilitates over 80% of global trade by volume and provides employment across 

countries. This study offers a quantitative exploration of the determinants of dry bulk freight 

rates (a key profitability metric) and demolition prices (representing the residual value of 

vessels). The freight and demolition markets are inherently interconnected, and this 

interdependence is intricately modeled in our proposed framework. 

 

To date, no comprehensive study has simultaneously addressed these two pivotal sectors of the 

shipping industry with the aim of developing a scientifically grounded predictive mechanism. 

Such a mechanism is crucial for informed decision-making—specifically, determining whether a 

shipowner should capitalize on the residual value of a vessel through the demolition market or 

focus on generating cash flows from the freight market. 
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Following an extensive review of the literature, which highlights both the strengths and gaps in 

prior research, we propose and implement an Artificial Neural Network (ANN) model. Using a 

unique dataset sourced from the Clarkson’s database, and the largest demolition shipping 

company globally, we rigorously test the robustness of our model and benchmark its 

performance against established econometric models, including ARIMA and VAR. Our findings 

demonstrate the superior predictive capabilities of the ANN-based approach. 

 

This study is of significant value to both academics and industry practitioners in the maritime 

sector. It addresses a critical gap in the literature and provides a novel perspective on decision-

making. Furthermore, the proposed framework serves as a robust decision-support tool for 

shipowners and stakeholders worldwide. 

 

 

 

1. Introduction 

Maritime transport is the backbone of global trade, facilitating the movement of commodities 

worldwide at competitive costs (Açık and Başer, 2017). Accounting for over 80% of global trade 

by volume, the shipping industry operates through four interconnected submarkets: the freight 

market, the newbuilding market, the sales and purchase market, and the demolition market 

(Stopford, 2001). These submarkets are deeply interdependent, with shifts in one directly 

influencing the others throughout a vessel's lifecycle. 

 

Among these, the freight market serves as the cornerstone of the maritime sector. It involves the 

chartering of vessels by cargo owners from shipowners, with freight rates acting as a primary 

indicator of market health and profitability. These rates are determined by the dynamic balance 

of supply and demand for transportation services, with fluctuations influenced by global 

economic conditions, geopolitical events, and operational costs. The cyclicality and volatility of 

freight rates significantly impact shipowners’ revenues and often trigger shifts in the demolition 

market. 
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The demolition market, in turn, acts as a regulatory valve for vessel supply, adjusting the fleet 

size to align with prevailing demand. This market not only recovers valuable materials such as 

steel scrap but also plays a critical role in balancing the broader shipping industry. For example, 

during periods of high freight rates, shipowners are incentivized to retain vessels, reducing the 

supply of steel scrap and driving up demolition prices. Conversely, during periods of low freight 

rates, increased scrapping activity restores equilibrium, stabilizing freight rates and ensuring 

sustainability in the sector (Karlis, Polemis, and Georgakis, 2016). 

 

Despite the clear economic significance of ship recycling, existing research often focuses on 

environmental and regulatory aspects, leaving the economic dynamics of the demolition market 

underexplored.  

 

This gap is particularly relevant for shipowners, who face complex decisions about whether to 

continue operating aging vessels or recycle them. These decisions are shaped by factors such as: 

1. Economic Obsolescence: When older ships are outperformed by more efficient vessels, 

reducing profitability (Açık and Başer, 2017). 

2. Physical Obsolescence: When maintenance and operational costs for deteriorating ships 

outweigh potential earnings (Evans, 1989). 

3. Political Obsolescence: When regulatory non-compliance renders a ship ineligible for 

operation (Evans, 1989).  

 

Addressing these challenges requires a robust decision-making framework that integrates 

insights from both the freight and demolition markets. The strong positive correlation between 

freight rates and demolition prices (Mikelis, 2007) highlights the interconnected nature of these 

markets. For instance, high freight rates discourage scrapping, reducing steel scrap supply and 

driving up prices, while low freight rates result in increased demolition activity, stabilizing the 

market. 

 

This study aims to develop a decision-support system that leverages Artificial Intelligence (AI) 

and Machine Learning (ML) techniques to predict the optimal recycling time for ships, thereby 

maximizing profitability for shipping companies. The system analyzes key driving factors from 
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the freight and demolition markets to provide actionable insights for shipowners, particularly for 

older dry bulk vessels where recycling decisions are critical. 

 

To achieve this, the study firstly, explores the interdependencies between the freight and 

demolition markets. Second, identifies the economic and operational factors influencing ship 

recycling decisions. Third, integrates these factors into predictive models to assess the 

profitability of different courses of action. By embedding these insights into a data-driven 

framework, this research seeks to address the complexities of ship recycling and provide a 

structured approach to navigating the cyclical and volatile nature of the shipping industry. 

 

This study not only contributes to bridging the gap in the economic analysis of the demolition 

market but also offers a practical tool for shipowners to make informed decisions. By doing so, it 

underscores the broader significance of strategic recycling in maintaining maritime equilibrium 

and driving long-term sustainability. 

In section 2 of this study the system design is described after identifying the needs. Section 3 

shows how variables were selected and section 4 introduces methodology and data preparation. 

Section 5 presents results of our models with respect to the four major dry-bulk indices and the 

demolition price metrics and compares with VAR and ARIMA models. Section 6 offers 

concluding remarks. 

 

2. System Design  

In the section that follows, we shall describe the design or our proposed system. To clearly 

define and convey the structure and logical framework of the proposed recycling decision-

support system, will begin by offering a brief overview followed by a comprehensive description 

for each of the system’s features which have been broken down into separate smaller tasks. 

These tasks will be introduced separately, in a sequential order. Below we present a visualization 

of the proposed system’s design.  



 5 

 

 

The proposed system aims to maximize shipowners’ profits, by computing and assessing the 

optimal future course of actions for a ship. Therefore, for a given demolition decision-making 

task, the shipowner’s future potential profits in each submarket, freight or demolition, are set to 

be predicted. 

 

 

 

2.1 Predicting Freight Rate Levels 

This section of the research focuses on understanding dry bulk freight rate dynamics, using the 

Baltic Dry Index (BDI) as the primary indicator. Beyond representing a weighted average of 

freight rates in the dry bulk sector, the BDI serves as a critical barometer for global economic 

activity, influenced by key macroeconomic variables. Literature in this field can be categorized 

into three distinct strands, each offering unique perspectives on freight rate determination in the 

dry bulk market. 

 

One significant approach links freight rate determination to macroeconomic variables such as 

global economic activity, industrial production growth, and oil prices (Hawdon, 1978; 

Strandenes, 1984; Beenstock & Vergottis, 1989; 1993). Building on this foundation, Tang et al. 
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(2013) examined shipping cycles in relation to factors such as crude oil prices, inflation, 

globalization, and dollar exchange rates. Similarly, Lyridis, Manos, and Zacharioudakis (2014) 

developed forecasting models for the dry bulk market, relying on macroeconomic indicators. In 

parallel, Batrinca and Cojanu (2014) used an OLS model to analyze freight rates, focusing on 

supply-demand dynamics and global GDP. Despite certain methodological challenges, their 

findings aligned with economic theory, highlighting the positive impact of global GDP and the 

negative influence of ship supply on freight rates. 

 

A second strand emphasizes microeconomic factors. Tamvakis (1995) and Tamvakis and 

Thanopoulou (2000) linked freight rates to ship-specific characteristics such as age, type, and 

size. Expanding this approach, Alizadeh and Talley (2011a) identified significant relationships 

between dry bulk freight rates and vessel attributes, including size, age, lay-can duration, and 

voyage routes. These insights suggest that individual vessel characteristics could play a pivotal 

role in decision-making processes, such as ship recycling. 

 

The third strand explores the interaction between commodity pricing and freight rates. Haigh and 

Bryant (2000) demonstrated that barge rates influence grain prices and market margins. Yu et al. 

(2007) identified dynamic relationships between corn market prices and freight rates, with 

disruptions in freight rates significantly impacting corn prices. Kavusanos et al. (2010, 2014) 

revealed strong endogenous links between commodity and freight derivatives markets, 

emphasizing the importance of monitoring commodity prices and freight rates due to global 

economic fluctuations. Angelopoulos et al. (2020) further examined the economic 

interconnections between globally traded commodities, freight rates, and financial markets, 

highlighting crude oil prices as a dominant indicator across markets. 

 

Freight rate forecasting gained traction in the 1990s. Early research includes Cullinane’s (1992) 

application of the Box-Jenkins methodology to forecast the Baltic Freight Index (BFI), 

demonstrating accuracy using metrics such as RMSE and Theil’s U. Later, Veenstra and Franses 

(1997) employed a VAR/VECM framework, and Li and Parson (1997) explored neural networks 

alongside ARIMA models for forecasting, offering groundbreaking insights into non-linear 
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approaches. Neural networks, as noted by Lyridis et al. (2004), excel in capturing sharp market 

fluctuations, significantly reducing forecast errors. 

 

Subsequent advancements include Wong’s (2014) comparative study of fuzzy heuristic 

modeling, Grey System, and ARIMA, which concluded ARIMA’s superior performance. Zeng et 

al. (2015) introduced an EMD-ANN approach, decomposing the BDI into components 

representing short-term changes, long-term trends, and external shocks, yielding improved 

forecasting accuracy compared to traditional models. 

 

Drawing insights from these studies, the research proposes employing Machine Learning (ML) 

models for freight rate forecasting. ML techniques demonstrate considerable promise in this 

domain, addressing complexities inherent in freight rate dynamics and offering a robust 

alternative to conventional forecasting methods. By leveraging advancements in this field, the 

study aims to contribute to more precise and reliable predictive models, aligning with 

contemporary trends in shipping economics. 

 

2.2 Predicting Steel Scrap Prices 

Forecasting steel scrap prices, especially in the context of ship recycling and its driving 

economic factors, remains an underexplored area in the literature. This section highlights the 

limited research on this topic and underscores the significance of understanding key determinants 

to enhance predictive accuracy and decision-making processes. 

Karlis et al. (2016) conducted one of the few studies addressing steel scrap price formation. They 

analyzed the influence of exchange rate fluctuations in countries responsible for over 85% of 

global ship recycling—India, Bangladesh, Pakistan, and China—against the US dollar. This 

study detailed the economic transactions involved in recycling ships and highlighted the 

economic disparity between the developing countries where ships are scrapped and the 

developed nations housing the largest shipping companies. 

 

Using steel scrap prices as the dependent variable, Karlis et al. modeled price formation through 

OLS estimation, incorporating factors such as exchange rates, the Baltic Dry Index (BDI) as a 

proxy for freight rates, and the number of scrapped ships. Their findings revealed that the 
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number of scrapped ships significantly influenced steel scrap prices in the Handysize market 

segment, while the BDI had a minor positive effect across all models. 

 

Acik and Baser (2017) further explored the cyclical nature of the shipping industry, concluding 

that a 1% reduction in freight rates leads to a 0.76% increase in the volume of recycled ships. 

Their findings aligned with those of Karlis et al. (2016), using the BDI as a key indicator of 

freight market activity. The dependent variable in their model was the volume of scrapped ships, 

measured in deadweight tonnage (DWT), emphasizing the link between freight rates and ship 

recycling volumes. 

 

Kagkarakis et al. (2016) employed a VAR model to examine the relationships among steel scrap 

prices, demolition prices, the number of registered ships older than 20 years, new vessel prices, 

second-hand vessel prices, and the BDI. They found a particularly strong connection between 

demolition prices and steel scrap prices. Similarly, Yin (2017) used a Cox proportional hazard 

model to investigate factors influencing shipowners’ decisions to scrap ships. This study 

categorized variables into two groups: technical characteristics (e.g., ship type, age, and carrying 

capacity) and market factors (e.g., global GDP and trade balances). Yin and Fan (2018) 

concluded that market factors exert a greater influence on shipowners’ decisions than technical 

characteristics. 

 

While no definitive conclusion has been reached, it is evident that commodities influence the 

demand for ships, and consequently, freight rates. Since steel scrap supply depends on freight 

rates, commodities are an integral consideration in steel scrap price estimation. However, for this 

study, only “metal” commodities and select market indicators (e.g., Bitcoin value) will be 

included in the analysis, excluding “agricultural” and “energy” commodities due to dataset 

limitations. 

 

This research aims to advance the existing literature by identifying key market and ship factors 

to achieve higher prediction accuracy for freight and steel scrap prices. 

Developing and testing a decision-support system to provide a more efficient and reliable 

framework for determining whether a ship should be recycled. 
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By integrating these objectives, the study seeks to address gaps in the literature and provide 

actionable insights for stakeholders in the shipping and recycling industries. 

 

2.3 The ‘Recycle or Not Recycle’ Feature 

A central feature of the proposed system is its ability to address the recurring dilemma faced by 

shipowners: whether to recycle their vessel or continue chartering it. The system evaluates this 

decision by comparing two key financial outcomes: (1) the immediate recycling profit derived 

from selling the ship to a scrapyard and (2) the potential future profit generated by continuing to 

charter the ship over a specific period before reconsidering recycling. By providing clear 

financial comparisons, the system equips shipowners with actionable insights for making well-

informed decisions. 

 

3. Data Description  

The dataset used for this research was sourced from Clarkson’s database and spans weekly 

observations from 1996 to 2022, encompassing 26 variables and totaling 1,404 data points. 

Although not all variables were consistently recorded throughout the entire period, the dataset 

remains a highly valuable resource for analysis. This study focuses specifically on two key 

variables critical to the decision-making process outlined in the model design: freight rate and 

scrap price. 

 

To identify predictors for the freight rate and scrap price, the Pearson correlation coefficient and 

Mutual Information (MI) coefficient were employed, as shown in Tables 1 and 2. 

 

The MI coefficient quantifies the mutual dependence between variables, effectively measuring 

how much information about one variable can be inferred from observing the other. 

Mathematically, Mutual Information is defined as: 

 

                        (1) 
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The results of this analysis are presented in Tables 1 and 2. Higher MI scores indicate stronger 

relationships between independent and dependent variables. In this study, Table 1A focuses on 

freight rate prices and steel scrap price (Bangladesh Index) as the dependent variables. Variables 

with MI scores exceeding 0.5, highlighted in the tables, were identified as strong predictor 

candidates if they had not already been included in the initial selection based on Pearson 

correlation analysis. 

 

To ensure a robust model, variables with high MI scores were incorporated as predictors for the 

freight rate and steel scrap price predictive models. Notably, the MI results aligned closely with 

those of the Pearson correlation analysis. Variables with higher MI scores generally exhibited 

strong Pearson correlation coefficients as well, reinforcing their suitability for inclusion. 

 

This process of using Mutual Information analysis not only complements the correlation-based 

approach but also provides an alternative perspective on feature selection, further validating the 

final set of predictors used in the models. 

 

Based on the notion that, the pandemic immensely affected the dry bulk sector and other 

shipping subsectors (e.g.: tankers), which is further supported by the majority of studies 

conducted on this event (Puspa et al., 2021; Gray, 2020; Cullinane and Haralambides, 2021), it 

was decided that both the freight rate and scrap price predictive models will be considering the 

monthly Covid-19 cases recorded in China. It should be noted that this is our first successful 

attempt to incorporate macro-economic exogenous factors in the predictive models that will form 

the basis of this project’s developed ship-recycling decision-support system. 

 

4. Implementation - Methodology 

The proposed solution leverages machine learning techniques, specifically neural networks, to 

address the problem. As with any machine learning project, the success of this approach depends 

heavily on the availability and careful selection of data features. The system was developed and 

tested on an Intel(R) Core(TM) i5-6600 4-core CPU @ 3.50 GHz with 16GB RAM, ensuring 

adequate computational resources for model training and evaluation. 
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4.1 Why Choose an LSTM Neural Network? 

Historically, linear models have been the go-to approach for time series forecasting due to their 

simplicity, interpretability, and ease of use in straightforward prediction tasks. However, with the 

increasing availability of market data and advances in deep learning, neural networks have 

become a focal point for research seeking to solve complex real-world problems. 

 

The choice of neural network architecture depends on the task. For instance:Multilayer 

Perceptrons (Deep Neural Networks) and Convolutional Neural Networks (CNNs) are 

commonly used for classification tasks.Recurrent Neural Networks (RNNs) and Recursive 

Neural Networks excel in language processing tasks. 

 

For time series forecasting, architectures such as Multilayer Perceptrons (MLPs), Recurrent 

Neural Networks (RNNs), and Long Short-Term Memory (LSTM) Networks are among the 

most widely adopted (Brownlee, 2022). These networks offer several advantages typical of 

neural networks, including:Support for multivariate inputs and multi-step outputs.The ability to 

learn complex mappings between input data and target outputs.The capacity for iterative 

improvement via the Back-Propagation algorithm, which adjusts weights and biases to enhance 

prediction accuracy. 

 

RNNs are particularly effective for time series forecasting due to their ability to retain 

information across time steps using internal memory, known as hidden states. This makes them 

well-suited for sequential data such as historical price points (e.g., freight and scrap prices). 

However, RNNs have notable limitations like memory constraints: RNNs struggle to retain 

information over long sequences, eventually "forgetting" past inputs and computational 

demands: Their advanced architecture requires longer training times and more complex setup 

processes. 

 

Given the nature of the shipping industry, characterized by high volatility and long economic 

cycles averaging six years (Goulielmos, 2020), these shortcomings render traditional RNNs 

unsuitable for this application. 
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LSTM Networks Were Selected being a specialized type of RNN, which addresses the memory 

limitations of traditional RNNs. As their name suggests, LSTMs can effectively manage both 

short-term and long-term memory, enabling them to capture long-term trends and seasonal 

patterns in the data. This makes them ideal for modeling the shipping industry, where 

understanding extended economic cycles and market volatility is crucial. 

 

By utilizing LSTM networks, the system can discover, model, and account for long-term trends 

in freight and scrap prices, ensuring robust and reliable forecasting for decision-making. This 

capability, combined with their proven effectiveness in handling sequential data, makes LSTMs 

the optimal choice for this project. 

 

4.2 Preparing the Data  

A crucial preprocessing step in developing the LSTM models was feature scaling, which ensures 

that variables with different units and numerical ranges do not disproportionately influence the 

model. Without appropriate scaling, functions in machine learning (ML) algorithms may overly 

emphasize variables with larger magnitudes while underweighting those with smaller values, 

potentially leading to biased computations. Feature scaling standardizes numerical ranges, 

making it easier to identify each feature’s contribution to the dependent variable. 

 

Two common approaches to feature scaling are the Min-Max Scaling and Standard Scaling 

methods. 

The Min-Max Scaler normalizes data to a fixed range, typically between 0 and 1, using the 

following transformation: 

                 (2) 

 

where x represents the original value, and xmin and   xmax are the minimum and maximum values 

within the feature range. This ensures that the highest values in the dataset remain closer to 1, 

while the lowest values are mapped closer to 0. 

Alternatively, the Standard Scaler standardizes data by centering it around zero and scaling it to 

unit variance, using the formula: 
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                             (3) 

Where x is the input value, �̅� is the mean and σ is the standard deviation of the training samples 

(for each column). This transformation is particularly useful for algorithms such as Support 

Vector Machines (SVM), which assume the data is centered around zero. 

 

The choice between Min-Max Scaling and Standard Scaling is typically data-dependent and 

requires empirical evaluation. In this study, different scaling techniques were tested to determine 

their impact on model performance. Ultimately, Min-Max Scaling was selected based on its 

superior empirical results. 

 

5. Model Architecture 

5.1 Layers and Neurons 

The structure of the model, including the number of nodes in the hidden layers and the number of 

hidden layers, requires careful tuning. These hyperparameters are typically determined 

experimentally, as there is no universal formula for selecting them. To achieve optimal 

performance, various configurations are tested, and the most effective setup is chosen. 

 

A common heuristic was used as a starting point to determine the number of neurons in the 

hidden layers: 

𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒏𝒆𝒖𝒓𝒐𝒏𝒔 𝒊𝒏 𝒂 𝒉𝒊𝒅𝒅𝒆𝒏 𝒍𝒂𝒚𝒆𝒓 =
𝟐

𝟑
 × 𝒔𝒊𝒛𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒊𝒏𝒑𝒖𝒕 𝒍𝒂𝒚𝒆𝒓 + 𝒔𝒊𝒛𝒆 𝒐𝒇 𝒕𝒉𝒆 𝒐𝒖𝒕𝒑𝒖𝒕 𝒍𝒂𝒚𝒆𝒓  

 

This guideline, widely adopted by machine learning practitioners, provides a reliable baseline for 

initial experimentation. Subsequent adjustments are made based on the model’s performance 

during validation. 

 

5.2 Activation Function 

Given the time series forecasting nature of the project, the Sigmoid activation function was 

initially considered. The sigmoid function is expressed as: 
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𝑓(𝑥) =
1

1+𝑒−𝑥            (4) 

where x is the input to the neuron. This function maps inputs to outputs in the range [0,1], with 

𝑒−𝑥  ensuring positivity and +1 guaranteeing the denominator remains greater than or equal to 1. 

While sigmoid is widely used in many contexts, it presents notable challenges. Outputs tend to 

saturate near 0 or 1 for large or small input values, leading to diminished gradients. This results 

in the vanishing gradient problem during backpropagation, where weights are updated 

minimally, causing slow or stalled learning and increased computational expense. 

To address these issues, the Rectified Linear Unit (ReLU) activation function was explored. 

ReLU is defined as: 

                                               f(x)=max (0, x)       (5) 

For positive inputs, the function outputs the input value itself, while for non-positive inputs, the 

output is zero. ReLU offers several advantages that make it highly suitable for deep learning 

applications. Its simplicity allows for efficient computation, as the calculation involves only the 

maximum function. By setting negative values to zero, ReLU introduces sparsity in the network, 

deactivating certain neurons and enhancing computational efficiency. 

 

Another significant advantage of ReLU is its ability to avoid the vanishing gradient problem. 

The derivative of ReLU is defined as: 

𝑓 ′(𝑥) = {
1, 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 ≤ 0

           (6) 

 

Unlike the sigmoid function, ReLU does not produce diminishing gradients for positive inputs, 

ensuring that weight updates remain effective during backpropagation. This facilitates faster and 

more robust learning. 

 

Although sigmoid was initially considered due to its historical prominence, ReLU was ultimately 

chosen for its computational efficiency and ability to mitigate the vanishing gradient problem. 

This decision supports the goal of achieving a highly performant model architecture suitable for 

time series forecasting tasks. 

 

5.3 Prediction Accuracy Testing 
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The LSTM Neural Network was employed to forecast dry bulk freight rates for four ship 

categories: Handysize, Panamax, Capesize, and Supramax. Predictions were made for time 

intervals of 1 month, 3 months, and 6 months. The following graphs illustrate the model's 

accuracy compared to the target variables. 

 

Graph 1 presents the LSTM Neural Network's forecast for the 1-month-ahead Handysize freight 

rate, while Graph 2 displays predictions for the 3-month-ahead interval. Handysize vessels, the 

smallest in the dry bulk segment, are commonly used to transport grains along major Atlantic 

and Pacific routes. Between 2018 and 2021, the freight rate trend remained relatively stable, with 

minimal volatility around its average value. During the COVID-19 pandemic in 2020, rates fell 

below $5,000—equivalent to the daily operational cost of a vessel of this type. However, starting 

in February 2021, freight rates surged due to increased demand driven by significant global 

liquidity injections and persistent supply chain disruptions as the pandemic gradually came under 

control. 

 

The metrics displayed below each graph confirm expectations: 1-month-ahead predictions are 

more accurate than 3-month-ahead forecasts. For a highly volatile market like freight, Mean 

Absolute Percentage Error (MAPE) values of 2.94% for the 1-month interval and 6.75% for the 

3-month interval are considered satisfactory. 

 

All forecasted price points shown in this section’s graphs were generated by the LSTM model 

based on input data from the preceding 36 months. Using this historical data, the model produced 

predictions for either the next 1 or 3 time steps. 

 

Graph 1: Handysize Freight Rate 1-month ahead prediction interval  

RMSE=1,098.5, MAPE=2.94,MAE=1,098.52  
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Graph 2: Handysize Freight Rate 3-month ahead prediction interval RMSE=1,198.8, 

MAPE=6.75,MAE=1,214.6 

  

Graph 3 illustrates the LSTM Neural Network's forecast for the 1-month-ahead Capesize freight 

rate, while Graph 4 presents predictions for the 3-month-ahead interval. Capesize vessels, the 

largest in the dry bulk sector, are primarily used to transport iron ore and coal along major 

Atlantic and Pacific shipping routes. 

 

Between 2017 and 2021, freight rates for Capesize ships exhibited the highest volatility among 

all ship types. During the COVID-19 pandemic (2020 to early 2021), these ships often operated 

at a substantial loss. However, starting in February 2021, freight rates surged significantly. This 

increase was driven by soaring global demand for iron ore, a critical construction material, as 

economic activity in construction reached unprecedented levels. China's GDP growth rate 
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exceeded 8% during this period, and as the world’s second-largest importer of iron ore, the 

country played a significant role in driving this spike in freight rates. 

 

The metrics displayed below each graph indicate that 1-month-ahead predictions are more 

accurate than 3-month-ahead forecasts. Although precise accuracy is challenging to achieve in 

such a highly volatile market, the upward trend in freight rates is captured clearly and 

approximated effectively by the LSTM model. 

 

Graph 5 depicts the LSTM Neural Network's forecast for the 1-month-ahead Supramax freight 

rate, while Graph 6 illustrates predictions for the 3-month-ahead interval. Supramax vessels, 

classified as medium-sized ships, are larger than Handysize but smaller than Panamax. They are 

primarily used to transport commodities such as fertilizers, grains, bauxite, and steel across 

major Atlantic and Pacific shipping routes. 

 

Between 2016 and 2021, freight rates for Supramax vessels demonstrated weak profitability, 

with low rates and average volatility of approximately one standard deviation from the mean 

during 2016–2020. However, starting in February 2021, freight rates experienced a sharp 

increase, mirroring trends in other ship types. This rise was driven by a surge in global demand 

for the commodities transported by Supramax ships. 

The metrics displayed below each graph confirm that 1-month-ahead predictions are 

significantly more accurate than 3-month-ahead forecasts. Despite the inherent volatility in the 

Supramax market, the prediction accuracy demonstrated by the metrics is satisfactory. 

 

Graph 7 presents the LSTM Neural Network's forecast for the 1-month-ahead Panamax freight 

rate, while Graph 8 depicts predictions for the 3-month-ahead interval. Panamax vessels, large 

ships second only to Capesize in size, are more volatile than Supramax and Handysize ships, as 

reflected in the graphs. These vessels are used to transport iron ore, coal, and steel, typically 

handling smaller cargo loads compared to Capesize ships, along major Atlantic and Pacific 

routes. 
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Between 2017 and 2021, Panamax freight rates displayed disappointing performance, with 

significant losses recorded during the COVID-19 pandemic. However, from February 2021 

onward, freight rates began to recover, following the upward trend seen in Capesize rates, albeit 

with less intensity. 

 

The metrics shown below each graph indicate that the 1-month-ahead predictions are marginally 

less accurate than the 3-month-ahead forecasts. Nonetheless, for a highly volatile market like 

Panamax, the accuracy achieved is considered satisfactory. 

 

The next step involves testing the Bangladesh Steel Scrap Price for 1-month and 3-month 

prediction intervals. The analysis reveals that the time path of this variable closely aligns with 

freight rates, as the supply and demand factors influencing the shipping market similarly impact 

the demolition market. Specifically, when freight rates are high, the number of demolition 

candidates decreases. Combined with strong demand for steel scrap—the primary raw material 

for steel production—this dynamic keeps steel scrap prices elevated. 

 

The model demonstrates strong predictive accuracy for steel scrap price formation across all 

intervals, particularly for the 1-month and 3-month forecasts.  

 

Tables 2 and 3 compare our model’s results with ARIMA(3,1,2) and standard VAR(2) models 

and they are shown to be superior. 
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Table 2: Freight Comparison Among Models 

 

 

 

Table 3: Steel Scrap Price Comparison Among Models 
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6. Conclusion 

Maritime transport serves as the cornerstone of global trade, with over 80% of goods by value 

(UNCTAD, 2021) transported via sea. Understanding the factors influencing freight rate and 

commodity price formation is essential for all stakeholders in the shipping industry. Shippers, 

investors, policymakers, and even consumers stand to benefit from the insights generated by the 

decision-making support system proposed in this research. This system aims to enhance 

decision-making processes, fostering better strategies and outcomes across the maritime and 

trade sectors. 

The demolition market, an integral yet often overlooked component of the shipping industry, 

exhibits complex interdependencies with freight rates. While this relationship may appear 

straightforward, it demands deeper investigation to uncover the nuanced dynamics at play. 

Inspired by the literature (Angelopoulos et al., 2020), this study has developed a robust 

framework incorporating a diverse range of commodity drivers that have proven effective in 

influencing freight and scrap price determination. Additionally, the research has produced and 

validated forecasting models that outperform both naïve and sophisticated benchmarks, such as 

VAR and ARIMA, in terms of accuracy and reliability. 

Looking ahead, we propose expanding the research by integrating the current system with other 

advanced algorithms, such as Broyden (Mohd et al., 2014), Gauss-Seidel, and Newton methods 

(Ludwig, 2007). These algorithms could enhance the system’s capability to simulate 

macroeconomic scenarios and assess their impacts on forecasting models. Another compelling 

direction involves exploring the system’s potential to predict economic turning points, such as 

the 2008 financial crisis, which devastated the shipping industry. 

Such advancements would enable the system to assign probabilities to potential turning points, 

offering invaluable foresight for stakeholders. This is particularly critical in the current 

landscape, where scrap prices are at two standard deviations above their long-term mean—a 

significant deviation warranting further analysis. By incorporating macroeconomic scenarios and 

probabilistic modeling, the system could become a powerful tool for navigating uncertainties in 

the maritime and demolition sectors, thereby contributing to more resilient and informed 

decision-making. 
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ANNEX. 

Tables. 

Table 1A. Dependence indicators. 

 Dependent Variable 

 Freight Rate Steel Scrap 

Independent Variable  Mutual 

Information 

Score  

Pierson 

Correlation 

Coefficient 

Mutual 

Information 

Score  

Pierson 

Correlation 

Coefficient 

Copper Price  2,09 0.63 2,74 0.81 

World Fleet Average Age  1,28 0.25 2,54 0.44 

Number of new Bulkcarrier ships 

(built so far into the year)  

0,99 -0.34 1,74 -0.42 

Number of new Bulkcarrier ships 

(built so far into the year in DWT 

million)  

0,97 -0.77 1,73 -0.67 

Fleet Growth Percentage, (compared 

to previous year’s Bulkcarrier world 

fleet)  

0,93 -0.42 1,72 0.51 

Bulkcarrier ships ordered to be built 

so far into the Year in Compensated 

gross tonnage  

0,88 0.78 1,55 -0.65 

Aluminum Price  0,85 0.62 1,24 0.77 

Orderbook Percentage (compared to 

current Bulkcarrier world fleet stats)  

0,78 -0.54 1,18  

Forecasted Future Brent Oil Price  0,71 0.55 1,17 -0.62 

Forecasted Future Steel Rebar Price  0,67 0.71 1,15 -0.6 

Bangladesh Steel Scrap Price Index  0,64 0.89 1,10 0.83 

Bulkcarrier ships ordered to be built 

so far into the Year in Gross tonnage  

0,63 -0.61 1,09 -0.78 

Iron Ore Price  0,62 0.52 1,06 0.65 
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 Dependent Variable 

 Freight Rate Steel Scrap 

Independent Variable  Mutual 

Information 

Score  

Pierson 

Correlation 

Coefficient 

Mutual 

Information 

Score  

Pierson 

Correlation 

Coefficient 

BITCOIN Price  0,60 0.62 1,04 -0.67 

Number of Bulkcarrier ships ordered 

to be built so far into the Year  

0,57 -0.54 0,97 0.84 

Steel Rebar Price  0,57 0.71 0,96 0.74 

Number of ships demolished so far 

into the year  

0,43 0.86 0,92 0.84 

Newcastle Coal Price  0,43 0.55 0,86 0.59 

Bulkcarrier ships ordered to be built 

so far into the Year in DWT  

0,40 -0.85 0,65 -0.28 

Tons of Steel Scrapped so far into 

the year  

0,33 0.89 0,41 0.65 
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Graphs. 

 

Graph 3: Capesize Freight Rate 1-month ahead prediction interval  

RMSE=286.4, MAPE=13.6,MAE=3,167.3  

 

 

Graph 4: Capesize Freight Rate 3-month ahead prediction interval RMSE=298.2, 

MAPE=15.8,MAE=3,461.9  
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Graph 5: Supramax Freight Rate 1-month ahead prediction interval  

RMSE=406.15, MAPE=4.01,MAE=484.78.9  

 

 

 

Graph 6: Supramax Freight Rate 3-month ahead prediction interval RMSE=623.15, 

MAPE=7.73,MAE=872.79  
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Graph 7: Panamax Freight Rate 1-month ahead prediction interval  

RMSE=1,766.36, MAPE=5.83,MAE=1,995.37 74  

 

 

 

Graph 8: Panamax Freight Rate 3-month ahead prediction interval  

RMSE=2,332.2, MAPE=5.32,MAE=2,897.54  
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Graph 9: Steel Scrap Price 1-month ahead prediction interval  

RMSE=9.90, MAPE=1.41,MAE=10  

 

 

Graph 10: Steel Scrap Price 3-month ahead prediction interval  RMSE=4.84, 

MAPE=2.23,MAE=14.7  

 

 

 


